15 minute read

Learning

Reasoning



Reasoning is the generation or evaluation of claims in relation to their supporting arguments and evidence. The ability to reason has a fundamental impact on one's ability to learn from new information and experiences because reasoning skills determine how people comprehend, evaluate, and accept claims and arguments. Reasoning skills are also crucial for being able to generate and maintain viewpoints or beliefs that are coherent with, and justified by, relevant knowledge. There are two general kinds of reasoning that involve claims and evidence: formal and informal.



Formal Reasoning

Formal reasoning is used to evaluate the form of an argument, and to examine the logical relationships between conclusions and their supporting assertions. Arguments are determined to be either valid or invalid based solely on whether their conclusions necessarily follow from their explicitly stated premises or assertions. That is, if the supporting assertions are true, must the conclusion also be true? If so, then the argument is considered valid and the truth of the conclusion can be directly determined by establishing the truth of the supporting assertions. If not, then the argument is considered invalid, and the truth of the assertions is insufficient (or even irrelevant) for establishing the truth of the conclusion. Formal reasoning is often studied in the context of categorical syllogisms or "if-then" conditional proofs. Syllogisms contain two assertions and a conclusion. An example of a logically valid syllogism is: All dogs are animals; all poodles are dogs; therefore poodles are animals. A slight change to one of the premises will create the invalid syllogism: All dogs are animals; some dogs are poodles; therefore all poodles are animals. This argument form is invalid because it cannot be determined with certainty that the conclusion is true, even if the premises are true. The second premise does not require that all poodles are dogs. Thus, there may be some poodles who are not dogs and, by extension, some poodles who are not animals. This argument is invalid despite the fact that an accurate knowledge of dogs, poodles, and animals confirms that both the premises and the conclusion are true statements. This validity-truth incongruence highlights the important point that the conceptual content of an argument or the real-world truth of the premises and conclusion are irrelevant to the logic of the argument form.

Discussions of formal reasoning may sometimes refer to the rules of logic. It is common for formal reasoning to be described as a set of abstract and prescriptive rules that people must learn and apply in order to determine the validity of an argument. This is the oldest perspective on formal reasoning. Some claim that the term formal reasoning refers directly to the application of these formal rules.

However, many theorists consider this perspective misguided. Describing formal reasoning as the evaluation of argument forms conveys a more inclusive and accurate account of the various perspectives in this field. There are at least four competing theories about how people determine whether a conclusion necessarily follows from the premises. These theories are commonly referred to as rule-based perspectives, mental models, heuristics, and domain-sensitive theories. People outside the rule-based perspective view the rules of logic as descriptive rules that simply give labels to common argument forms and to common errors or fallacies in logical reasoning. These theories are too complex to be detailed here, and there is currently no consensus as to which theory best accounts for how people actually reason. A number of books and review articles provide comprehensive discussions of these theories and their relative merits; one example is Human Reasoning: The Psychology of Deduction by Jonathan Evans, Stephen Newstead, and Ruth Byrne.

There is a consensus that human reasoning performance is poor and prone to several systematic errors. Performance on formal reasoning tasks is generally poor, but can be better or worse depending upon the particular aspects of the task. People perform worse on problems that require more cognitive work, due to excessive demands placed on their limited processing capacity or working memory. The required cognitive work can be increased simply by having more information, or by the linguistic form of the argument. Some linguistic forms can affect performance because they violate conventional discourse or must be mentally rephrased in order to be integrated with other information.

In addition, people's existing knowledge about the concepts contained in the problem can affect performance. People have great difficulty evaluating the logical validity of an argument independent of their real-world knowledge. They insert their knowledge as additional premises, which leads them to make more inferences than is warranted. Prior knowledge can also lead people to misinterpret the meaning of premises. Another common source of error is belief bias, where people judge an argument's validity based on whether the conclusion is consistent with their beliefs rather than its logical relationship to the given premises.

The systematic errors that have been observed provide some insights about what skills a person might develop to improve performance. Making students explicitly aware of the likely intrusion of their prior knowledge could facilitate their ability to control or correct such intrusions. Students may also benefit from a detailed and explicit discussion of what logical validity refers to, how it differs from real-world truth or personal agreement, and how easy it is to confuse the two. Regardless of whether or not people commonly employ formal rules of logic, an understanding and explicit knowledge of these rules should facilitate efforts to search for violations of logical validity. Theorists of informal reasoning such as James Voss and Mary Means have made a similar argument for the importance of explicit knowledge about the rules of good reasoning. Errors attributed to limited cognitive resources can be addressed by increasing reasoning skill, and practice on formal reasoning tasks should increase proficiency and reduce the amount of cognitive effort required. Also, working memory load should be reduced by external representation techniques, such as Venn diagrams.

Informal Reasoning

Informal reasoning refers to attempts to determine what information is relevant to a question, what conclusions are plausible, and what degree of support the relevant information provides for these various conclusions. In most circumstances, people must evaluate the justification for a claim in a context where the information is ambiguous and incomplete and the criteria for evaluation are complex and poorly specified. Most of what is commonly referred to as "thinking" involves informal reasoning, including making predictions of future events or trying to explain past events. These cognitive processes are involved in answering questions as mundane as "How much food should I prepare for this party?" and as profound as "Did human beings evolve from simple one-celled organisms?" Informal reasoning has a pervasive influence on both the everyday and the monumental decisions that people make, and on the ideas that people come to accept or reject.

Informal and formal reasoning both involve attempts to determine whether a claim has been sufficiently justified by the supporting assertions, but these types of reasoning differ in many respects. The vast majority of arguments are invalid according to formal logic, but informal reasoning must be employed to determine what degree of justification the supporting assertions provide. Also, the supporting assertions themselves must be evaluated as to their validity and accuracy. Formal reasoning involves making a binary decision based only on the given information. Informal reasoning involves making an uncertain judgment about the degree of justification for a claim relative to competing claims–and basing this evaluation on an ill-defined set of assertions whose truth values are uncertain.

Based on the above characterization of informal reasoning, a number of cognitive skills would be expected to affect the quality of such reasoning. The first is the ability to fully comprehend the meaning of the claim being made. Understanding the conceptual content is crucial to being able to consider what other information might bear on the truth or falsehood of a claim. Other cognitive processes involved in reasoning include the retrieval of relevant knowledge from long-term memory, seeking out new relevant information, evaluating the validity and utility of that information, generating alternatives to the claim in question, and evaluating the competing claims in light of the relevant information.

Successful reasoning requires the understanding that evidence must provide information that is independent of the claim or theory, and that evidence must do more than simply rephrase and highlight the assumptions of the theory. For example, the assertion "Some people have extrasensory perception" does not provide any evidence about the claim "ESP is real." These are simply ways of restating the same information. Evidence must be an assertion that is independent of the claim, but that still provides information about the probable truth of the claim. An example of potential evidence for the claim that "ESP is real" would be "Some people know information that they could not have known through any of the normal senses." In other words, evidence constitutes assertions whose truth has implications for, but is not synonymous with, the truth of the claim being supported.

Without an understanding of evidence and counterevidence and how they relate to theories, people would be ineffective at identifying information that could be used to determine whether a claim is justified. Also, lack of a clear distinction between evidence and theory will lead to the assimilation of evidence and the distortion of its meaning and logical implications. This eliminates the potential to consider alternative claims that could better account for the evidence. People will also fail to use counterevidence to make appropriate decreases in the degree of justification for a claim.

Discussions of informal reasoning, argumentation, and critical thinking commonly acknowledge that a prerequisite for effective reasoning is a belief in the utility of reasoning. The cognitive skills described above are necessary, but not sufficient, to produce quality reasoning. The use of these skills is clearly effortful; thus, people must believe in the importance and utility of reasoning in order to consistently put forth the required effort. The epistemology that promotes the use of reasoning skills is the view that knowledge can never be absolutely certain and that valid and useful claims are the product of contemplating possible alternative claims and weighing the evidence and counterevidence. Put simply, people use their reasoning skills consistently when they acknowledge the possibility that a claim may be incorrect and also believe that standards of good reasoning produce more accurate ideas about the world.

Inconsistent, selective, and biased application of reasoning skills provides little or no benefits for learning. Greater reasoning skills are assumed to aid in the ability to acquire new knowledge and revise one's existing ideas accordingly. However, if one contemplates evidence and theory only when it can be used to justify one's prior commitments, then only supportive information will be learned and existing ideas will remain entrenched and unaffected. The development of reasoning skills will confer very little intellectual benefit in the absence of an epistemological commitment to employ those skills consistently.

General Reasoning Performance

Reports from the National Assessment of Educational Progress and the National Academy of Sciences consistently show poor performance on a wide array of tasks that require informal reasoning. These tasks span all of the core curriculum areas of reading, writing, mathematics, science, and history.

Some smaller-scale studies have attempted to paint a more detailed picture of what people are doing, or failing to do, when asked to reason. People demonstrate some use of informal reasoning skills, but these skills are underdeveloped and applied inconsistently. Children and adults have a poor understanding of evidence and its relationship to theories or claims. Only a small minority of people attempt to justify their claims by providing supporting evidence. When explicitly asked for supporting evidence, most people simply restate the claim itself or describe in more detail what the claim means. It is especially rare for people to generate possible counter-evidence or to even consider possible alternative claims.

The inconsistent application of informal reasoning skills could have multiple causes. Some theorists suggest that reasoning skills are domain specific and depend heavily on the amount of domain knowledge a person possesses. Alternatively, underdeveloped or unpracticed skills could lead to their haphazard use. A third possibility is that people's lack of explicit knowledge about what good reasoning entails prevents them from exercising conscious control over their implicit skills.

Inconsistent use of informal reasoning skills may also arise because people lack a principled belief in the utility of reasoning that would foster a consistent application of sound reasoning. People have extreme levels of certainty in their ideas, and they take this certainty for granted. In addition, the application of reasoning skills is not random, but is selective and biased such that prior beliefs are protected from scrutiny. This systematic inconsistency cannot be accounted for by underdeveloped skills, but can be accounted for by assuming a biased motivation to use these skills selectively. Regardless of whether or not people have the capacity for sound reasoning, they have no philosophical basis that could provide the motivation to override the selective and biased use of these skills.

Development of Reasoning Skills

There is only preliminary data about how and when informal reasoning skills develop. There is preliminary support that the development of reasoning takes a leap forward during the preadolescent years. These findings are consistent with Piagetian assumptions about the development of concrete operational thinking, in other words, thinking that involves the mental manipulation (e.g., combination, transformation) of objects represented in memory. However, younger children are capable of some key aspects of reasoning. Thus, the improvement during early adolescence could result from improvements in other subsidiary skills of information processing, from meta-cognitive awareness, or from an increase in relevant knowledge.

A somewhat striking finding is the lack of development in informal reasoning that occurs from early adolescence through adulthood. Some evidence suggests that college can improve reasoning, but the overall relationship between the amount of postsecondary education and reasoning skill is weak at best. The weak and inconsistent relationship that does exist between level of education and reasoning is likely due to indirect effects. Students are rarely required to engage in complex reasoning tasks. However, the spontaneous disagreements that arise in the classroom could expose them to the practice of justifying one's claim. Also, engagement in inquiry activities, such as classroom experiments, could provide implicit exposure to the principles of scientific reasoning.

There are relatively few programs aimed at developing informal reasoning skills; hence, there is little information about effective pedagogical strategies. Where they do exist, curricula are often aimed at developing general reasoning skills. Yet, many believe that effective reasoning skills are domain-or discipline-specific. Nevertheless, given the pervasive impact of reasoning skills on learning in general, it is clear that more systematic efforts are needed to foster reasoning skills at even the earliest grade levels. Of the approaches that have been attempted, there is some evidence for the success of scaffolding, which involves a teacher interacting with a student who is attempting to reason, and prompting the student to develop more adequate arguments. Another approach is to explicitly teach what good reasoning means, what evidence is, and how evidence relates to theories. This approach could be especially effective if classroom experiments are conducted within the context of explicit discussions about the principles of scientific reasoning. Also, if reasoning skills are discussed in conjunction with the content of the core subject areas, then students may develop an appreciation for the pervasive utility and importance of reasoning for the progress of ideas.

A number of theorists have suggested that debate between students with opposing views could foster the basic skills needed for informal reasoning. Debates could give students practice in having to consider opposing viewpoints and having to coordinate evidence and counterevidence in support of a claim. Also, providing justification for one's positions requires some cognitive effort, and the norms of social dialogue could provide the needed motivation. However, interpersonal debates are most commonly construed as situations in which individuals are committed to a position ahead of time, and in which their goal is to frame the issue and any evidence in a manner that will persuade their opponent or the audience that their own position is correct. Students' reasoning is already greatly impaired by their tendency to adopt a biased, defensive, or noncontemplative stance. Debate activities that reinforce this stance and blur the difference between defending a claim and contemplating a claim's justification may do more harm than good. To date, there is no empirical data that compare the relative costs and benefits of using interpersonal debate exercises to foster critical reasoning skills.

BIBLIOGRAPHY

BARON, JONATHAN. 1985. Rationality and Intelligence. Cambridge, Eng.: Cambridge University Press.

BARON, JONATHAN. 1988. Thinking and Deciding. Cambridge, Eng.: Cambridge University Press.

BOYER, ERNEST L. 1983. High School: A Report on Secondary Education in America. New York: Harper and Row.

CARY, SUSAN. 1985. "Are Children Fundamentally Different Thinkers and Learners Than Adults?" In Thinking and Learning Skills: Current Research and Open Questions, Vol. 2, ed. Susan Chipman, Judith Segal, and Robert Glaser. Hillsdale, NJ: Erlbaum.

EVANS, JONATHAN ST. B. T.; NEWSTEAD, STEPHEN E.; and BYRNE, RUTH M. J. 1993. Human Reasoning: The Psychology of Deduction. Hillsdale, NJ: Erlbaum.

JOHNSON-LAIRD, PHILIP N., and BYRNE, RUTH M. J. 1991. Deduction. Hillsdale, NJ: Erlbaum.

KUHN, DEANNA. 1991. The Skills of Argument. Cambridge, Eng.: Cambridge University Press.

MEANS, MARY L., and VOSS, JAMES F. 1996. "Who Reasons Well? Two Studies of Informal Reasoning Among Children of Different Grade, Ability, and Knowledge Levels." Cognition and Instruction 14:139–178.

NICKERSON, RAYMOND S. 1991. "Modes and Models of Informal Reasoning: A Commentary." In Informal Reasoning and Education, ed. James F. Voss, David N. Perkins, and Judith W. Segal. Hillsdale, NJ: Erlbaum.

PERLOMS, DAVID N. 1985. "Postprimary Education Has Little Impact on Informal Reasoning." Journal of Educational Psychology 77:562–571.

STEIN, NANCY L., and MILLER, CHRISTOPHER A. 1991. "I Win–You Lose: The Development of Argumentative Thinking." In Informal Reasoning and Education, ed. James F. Voss, David N. Perkins, and Judith W. Segal. Hillsdale, NJ: Erlbaum.

VOSS, JAMES F., and MEANS, MARY L. 1991. "Learning to Reason via Instruction and Argumentation." Learning and Instruction 1:337–350.

VYGOTSKY, LEV S. 1978. Mind in Society: The Development of Higher Psychological Processes, ed. Michael Cole. Cambridge, MA: Harvard University Press.

THOMAS D. GRIFFIN

Additional topics

Education - Free Encyclopedia Search EngineEducation EncyclopediaLearning - Causal Reasoning, Conceptual Change, Knowledge Acquisition, Representation, And Organization, Neurological Foundation, Perceptual Processes - ANALOGICAL REASONING