9 minute read


Causal Reasoning

A doorbell rings. A dog runs through a room. A seated man rises to his feet. A vase falls from a table and breaks. Why did the vase break? To answer this question, one must perceive and infer the causal relationships between the breaking of the vase and other events. Sometimes, the event most directly causally related to an effect is not immediately apparent (e.g., the dog hit the table), and conscious and effortful thought may be required to identify it. People routinely make such efforts because detecting causal connections among events helps them to make sense of the constantly changing flow of events. Causal reasoning enables people to find meaningful order in events that might otherwise appear random and chaotic, and causal understanding helps people to plan and predict the future. Thus, in 1980 the philosopher John Mackie described causal reasoning as "the cement of the universe." How, then, does one decide which events are causally related? When does one engage in causal reasoning? How does the ability to think about cause—effect relations originate and develop during infancy and childhood? How can causal reasoning skills be promoted in educational settings, and does this promote learning? These questions represent important issues in research on causal reasoning

Causal Perceptions and Causal Reasoning

An important distinction exists between causal perceptions and causal reasoning. Causal perceptions refer to one's ability to sense a causal relationship without conscious and effortful thought. According to the philosopher David Hume (1711–1776), perceptual information regarding contiguity, precedence, and covariation underlies the understanding of causality. First, events that are temporally and spatially contiguous are perceived as causally related. Second, the causal precedes the effect. Third, events that regularly co-occur are seen as causally related. In contrast, causal reasoning requires a person to reason through a chain of events to infer the cause of that event. People most often engage in causal reasoning when they experience an event that is out of the ordinary. Thus, in some situations a person may not know the cause of an unusual event and must search for it, and in other situations must evaluate whether one known event was the cause of another. The first situation may present difficulty because the causal event may not be immediately apparent. Philosophers have argued that causal reasoning is based on an assessment of criteria of necessity and sufficiency in these circumstances. A necessary cause is one that must be present for the effect to occur. Event A is necessary for event B if event B will not occur without event A. For example, the vase would not have broken if the dog had not hit the table. A cause is sufficient if its occurrence can by itself bring about the effect (i.e., whenever event A occurs, event B always follows). Often, more than one causal factor is present. In the case of multiple necessary causes, a set of causal factors taken together jointly produces an effect. In the case of multiple sufficient causes, multiple factors are present, any one of which by itself is sufficient to produce an effect.

The Development of Causal Perception and Causal Reasoning Skills

Causal perception appears to begin during infancy. Between three and six months of age, infants respond differently to temporally and spatially contiguous events (e.g., one billiard ball contacting a second that begins to roll immediately) compared to events that lack contiguity (e.g., the second ball begins to roll without collision or does not start to move until half a second after collision). Thus, the psychologist Alan Leslie proposed in 1986 that infants begin life with an innate perceptual mechanism specialized to automatically detect cause–effect relations based on contiguity. However, psychologists Leslie Cohen and Lisa Oakes reported in 1993 that familiarity with role of a particular object in a causal sequence influence ten-month-old infants' perception of causality. Therefore, they suggest that infants do not automatically perceive a causal connection when viewing contiguous events. The question of whether infants begin with an innate ability to automatically detect causality, or instead gradually develop casual perception through general learning processes remains a central controversy concerning the origins of causal thought.

Although infants perceive causal relationships, complex causal reasoning emerges during early childhood and grows in sophistication thereafter. Thus, information about precedence influences causal reasoning during childhood. When asked to determine what caused an event to occur, three-year-olds often choose an event that preceded it, rather than one that came later, but understanding of precedence becomes more consistent and general beginning at five years of age. Unlike contiguity and precedence, information about covariation is not available from a single casual sequence, but requires repeated experience with the co-occurrence of a cause and effect. Children do not begin to use covariation information consistently in their casual thinking before eight years of age. Because the various types of information relevant to causality do not always suggest the same causal relation, children and adults must decide which type of information is most important in a particular situation.

In addition to the perceptual cues identified by Hume, knowledge of specific causal mechanisms plays a central role in causal reasoning. By three years of age, children expect there to be some mechanism of transmission between cause and effect, and knowledge of possible mechanisms influences both children's and adults' interpretation of perceptual cues. For instance, when a possible causal mechanism requires time to produce an effect (e.g., a marble rolling down a lengthy tube before contacting another object), or transmits quickly across a distance (e.g., electrical wiring), children as young as five years of age are more likely to select causes that lack temporal spatial contiguity than would otherwise be the case. Because causal mechanisms differ for physical, social, and biological events, children must acquire distinct conceptual knowledge to understand causality in each of these domains. By three to four years of age, children recognize that whereas physical effects are caused by physical transmission, human action is motivated internally by mental states such as desires, beliefs, and intentions, and they begin to understand some properties of biological processes such as growth and heredity. Furthermore, conceptual understanding of specific causal mechanisms may vary across cultures and may be learned through social discourse as well as through direct experience.

A fundamental understanding of causality is present during early childhood; however, prior to adolescence children have difficulty searching for causal relations through systematic scientific experimentation. Preadolescents may generate a single causal hypothesis and seek confirmatory evidence, misinterpret contradictory evidence, or design experimental tests that do not provide informative evidence. In contrast, adolescents and adults may generate several alternative hypotheses and test them by systematically controlling variables and seeking both disconfirmatory and confirmatory evidence. Nevertheless, even adults often have difficulty designing valid scientific experiments. More generally, both children and adults often have difficulty identifying multiple necessary or sufficient causes.

Teaching Causal Reasoning Skills

The psychologist Diane Halpern argued in 1998 that critical thinking skills should be taught in primary, secondary, and higher educational settings. Casual reasoning is an important part of critical thinking because it enables one to explain and predict events, and thus potentially to control one's environment and achieve desired outcomes.

Three approaches to teaching causal reasoning skills may be efficacious. First, causal reasoning skills can be promoted by teaching students logical deduction. For example, teaching students to use counterfactual reasoning may help them assess whether there is a necessary relationship between a potential cause and an effect. Counterfactual reasoning requires student to imagine that a potential cause did not occur and to infer whether the effect would have occurred in its absence. If it would occur, then there is no causal relationship between the two events.

Second, causal reasoning skills can be promoted by teaching students to generate informal explanations for anomalous events or difficult material. For instance, learning from scientific texts can be particularly challenging to students, and often students have the misconception that they do not have adequate knowledge to understand texts. The psychologist Michelene Chi demonstrated in 1989 that students who use their general world knowledge to engage in causal, explanatory reasoning while reading difficult physics texts understand what they read considerably better than do students who do not draw upon general knowledge in this way. Furthermore, in 1999 the psychologist Danielle McNamara developed a reading training intervention that promotes explanatory reasoning during reading. In this program, students were taught a number of strategies to help them to use both information in the text and general knowledge to generate explanations for difficult material. Training improved both comprehension of scientific texts and overall class performance, and was particularly beneficial to at-risk students.

Third, the psychologist Leona Schauble demonstrated in 1990 that causal reasoning skills can be promoted by teaching students the principles of scientific experimentation. A primary goal of experimentation is to determine causal relationships among a set of events. Students may be taught to identify a potential cause of an effect, manipulate the presence of the cause in a controlled setting, and assesses whether or not the effect occurs. Thus, students learn to use the scientific method to determine whether there are necessary and sufficient relationships between a potential cause and an effect. Because the principles of science are often difficult for students to grasp, teaching these principles would provide students with formal procedures for evaluating causal relationships in the world around them.


BULLOCK, MERRY; GELMAN, ROCHEL; and BAILLARGEON, RENEE. 1982. "The Development of Causal Reasoning." In The Developmental Psychology of Time, ed. William J. Friedman. New York: Academic Press.

CHI, MICHELENE T. H., et al. 1989. "Self-Explanation: How Students Study and Use Examples in Learning to Solve Problems." Cognitive Science 13:145–182.

COHEN, LESLIE B., and OAKES, LISA M. 1993. "How Infants Perceive a Simple Causal Event." Developmental Psychology 29:421–433.

EPSTEIN, RICHARD L. 2002. Critical Thinking, 2nd edition. Belmont, CA: Wadsworth.

HALPERN, DIANE F. 1998. "Teaching Critical Thinking for Transfer across Domains." American Psychologist 53:449–455.

HUME, DAVID. 1960. A Treatise on Human Nature (1739). Oxford: Clarendon Press.

KUHN, D.; AMSEL, ERIC; and O'LOUGHLIN, MICHAEL. 1988. The Development of Scientific Thinking Skills. San Diego, CA: Academic Press.

LESLIE, ALAN M. 1986. "Getting Development off the Ground: Modularity and the Infant's Perception of Causality." In Theory Building in Developmental Psychology, ed. Paul Van Geert. Amsterdam: North-Holland.

MACKIE, JOHN L. 1980. The Cement of the Universe. Oxford: Clarendon Press.

MCNAMARA, DANIELLE S., and SCOTT, JEREMY L. 1999. Training Reading Strategies. Hillsdale, NJ: Erlbaum.

SCHAUBLE, LEONA. 1990. "Belief Revision in Children: The Role of Prior Knowledge and Strategies for Generating Evidence." Journal of Experimental Child Psychology 49:31–57.

SEDLAK, ANDREA J., and KURTZ, SUSAN T. 1981. "A Review of Children's Use of Causal Inference Principles." Child Development 52:759–784.

WELLMAN, HENRY M., and GELMAN, SUSAN A. 1998. "Knowledge Acquisition in Foundational Domains." In Handbook of Child Psychology: Cognition, Perception, and Language, 5th edition, ed. Deanna Kuhn and Robert Siegler. New York: Wiley.

WHITE, PETER A. 1988. "Causal Processing: Origins and Development." Psychological Bulletin 104:36–52.



Additional topics

Education - Free Encyclopedia Search EngineEducation EncyclopediaLearning - Causal Reasoning, Conceptual Change, Knowledge Acquisition, Representation, And Organization, Neurological Foundation, Perceptual Processes - ANALOGICAL REASONING