10 minute read


Multiple Intelligences

The theory of multiple intelligences (MI) was developed by Howard Gardner, a professor of cognition and education at Harvard University. Introduced in his 1983 book, Frames of Mind, and refined in subsequent writings, the theory contends that human intelligence is not a single complex entity or a unified set of processes (the dominant view in the field of psychology). Instead, Gardner posits that there are several relatively autonomous intelligences, and that an individual's intellectual profile reflects a unique configuration of these intelligences.

Definition of Intelligence

In his 1999 formulation of MI theory, Intelligence Reframed, Gardner defines intelligence as "a biopsychological potential to process information that can be activated in a cultural setting to solve problems or create products that are of value in a culture." By considering intelligence a potential, Gardner asserts its emergent and responsive nature, thereby differentiating his theory from traditional ones in which human intelligence is fixed and innate. Whether a potential will be activated is dependent in large part on the values of the culture in which an individual grows up and the opportunities available in that culture, although Gardner also acknowledges the role of personal decisions made by individuals, their families, and others. These activating forces result in the development and expression of a range of abilities (or intelligences) from culture to culture and also from individual to individual.

Gardner's definition of intelligence is unique as well in that it considers the creation of products such as sculptures and computers to be as important an expression of intelligence as abstract problem solving. Traditional theories do not recognize created artifacts as a manifestation of intelligence, and therefore are limited in how they conceptualize and measure it.

Criteria for intelligences. Gardner does not believe that the precise number of intelligences is known, nor does he believe that they can be identified through statistical analyses of cognitive test results. He began by considering the range of adult endstates that are valued in diverse cultures around the world. To uncover the abilities that support these end-states, he examined a wide variety of empirical sources from different disciplines that had never been used together for the purpose of defining human intelligence. His examination yielded eight criteria for defining an intelligence:

  • Two criteria derived from biology: (1) an intelligence should be isolable in cases of brain damage, and (2) there should be evidence for its plausibility and autonomy in evolutionary history.
  • Two criteria derived from developmental psychology: (3) an intelligence has to have a distinct developmental history along with a definable set of expert end-state performances, and (4) it must exist within special populations such as idiot savants and prodigies.
  • Two criteria derived from traditional psychology: (5) an intelligence needs to be supported by the results of skill training for its relatively independent operation, and (6) also by the results of psychometric studies for its low correlation to other intelligences.
  • Two criteria derived from logical analysis: (7) an intelligence must have its own identifiable core operation or set of operations, and (8) it must be susceptible to encoding in a symbol system–such as language, numbers, graphics, or musical notations.

To be defined as an intelligence, an ability has to meet most, though not all, of the eight criteria.

Identified intelligences. As of 2001, Gardner has identified eight intelligences:

  1. Linguistic intelligence, exemplified by writers and poets, describes the ability to perceive and generate spoken or written language.
  2. Logical-mathematical intelligence, exemplified by mathematicians and computer programmers, involves the ability to appreciate and utilize numerical, abstract, and logical reasoning to solve problems.
  3. Musical intelligence, exemplified by musicians and composers, entails the ability to create, communicate, and understand meanings made out of sound.
  4. Spatial intelligence, exemplified by graphic designers and architects, refers to the ability to perceive, modify, transform, and create visual or spatial images.
  5. Bodily-kinesthetic intelligence, exemplified by dancers and athletes, deals with the ability to use all or part of one's body to solve problems or to fashion products.
  6. Naturalistic intelligence, exemplified by archaeologists and botanists, concerns the ability to distinguish, classify, and use features of the environment.
  7. Interpersonal intelligence, exemplified by leaders and teachers, describes the ability to recognize, appreciate, and contend with the feelings, beliefs, and intentions of other people.
  8. Intrapersonal intelligence, apparent when individuals pursue a particular interest, choose a field of study or work, or portray their life through different media, involves the ability to understand oneself–including emotions, desires, strengths, and vulnerabilities–and to use such information effectively in regulating one's own life.

Gardner does not claim this roster of intelligences to be exhaustive; MI theory is based wholly on empirical evidence, and the roster can therefore be revised with new empirical findings. In the MI framework, all intelligences are equally valid and important, and though significantly independent of one another, they do not operate in isolation. Human activity normally reflects the integrated functioning of several intelligences. An effective teacher, for example, relies on linguistic and interpersonal intelligences, and possesses knowledge of particular subject areas as well.

Relationship to Other Theories

MI theory bears similarities to several other contemporary theories of intelligence, yet it remains distinct. Although it shares a pluralistic view of intelligence with Robert Sternberg's triarchic theory, MI theory organizes intelligences in terms of content areas, and no single cognitive function, such as perception or memory, cuts across all domains. The triarchic theory, in contrast, posits three intelligences differentiated by functional processes, and each intelligence operates consistently across domains.

Daniel Goleman's theory of emotional intelligence resonates with MI theory in that both acknowledge the social and affective aspects of intelligence. Whereas Goleman views intelligence from a moral and ethical perspective, however, Gardner regards all intelligences as value-free: He does not judge individuals as inferior or superior based on their configuration of intelligences, nor does he judge cultures as inferior or superior because they value one intelligence over another.

MI theory has been criticized on two grounds. First, some critics contend that psychometric research finds correlations, not autonomy, among abilities. Gardner has argued that these correlations are largely due to the use of psychometric instruments designed to measure only a given set of abilities. Second, critics have suggested that human intelligence is different from other human capabilities, such as musical talent. Gardner believes that such a narrow use of the word intelligence reflects a Western intellectual mind-set that does not recognize the diversity of roles that contribute to society.

Implications for Educational Practice

The primary intent for developing MI theory was to chart the evolution and topography of the human mind, not to prescribe educational practice. Nonetheless, MI theory has been discussed widely in the educational field and has been particularly influential in elementary education, where it has provided a useful framework for improving school-based practice in the areas of curricula, instruction, and assessment.

Curricula and instruction. From an MI perspective, curricula, particularly for young children, should encompass a broad range of subject areas that include (but go beyond) reading, writing, and arithmetic, because all intelligences are equally valuable. The visual arts, for example, are a serious domain in and of themselves, and not just as a means to improve reading scores. According to MI theory, the talented artist is just as intelligent as the excellent reader, and each has an important place in society. In The Disciplined Mind, Gardner cautions that an authentic MI-based approach goes beyond conveying factual knowledge about various domains: He stresses the importance of promoting in-depth exploration and real understanding of key concepts essential to a domain.

Because each child's biopsychological potential is different, providing a broad range of subject areas at a young age also increases the likelihood of discovering interests and abilities that can be nurtured and appreciated. Educators who work with at-risk children have been particularly drawn to this application of MI theory, because it offers an approach to intervention that focuses on strengths instead of deficits. By the same token, it extends the concept of the gifted child beyond those who excel in linguistic and logical pursuits to include children who achieve in a wide range of domains.

MI theory can be applied to the development of instructional techniques as well. A teacher can provide multiple entry points to the study of a particular topic by using different media, for example, and then encouraging students to express their understanding of the topic through diverse representational methods, such as pictures, writings, three-dimensional models, or dramatizations. Such instructional approaches make it possible for students to find at least one way of learning that is attuned to their predispositions, and they therefore increase motivation and engagement in the learning process. They also increase the likelihood that every student will attain at least some understanding of the topic at hand.

Assessment. When applied to student assessment, MI theory results in the exploration of a much wider range of abilities than is typical in the classroom, in a search for genuine problem-solving or product-fashioning skills. An MI-based assessment requires "intelligence-fair" instruments that assess each intellectual capacity through media appropriate to the domain, rather than through traditional linguistic or logical methods. Gardner also argues that for assessment to be meaningful to students and instructive for teachers, students should work on problems and projects that engage them and hold their interest; they should be informed of the purpose of the task–and the assessment criteria as well; and they should be encouraged to work individually, in pairs, or in a group. Thus, the unit of analysis extends beyond the individual to include both the material and social context.

MI-based assessments are not as easy to design and implement as standard pencil-and-paper tests, but they have the potential to elicit a student's full repertoire of skills and yield information that will be useful for subsequent teaching and learning. As part of Project Spectrum, Gardner and colleagues developed a set of assessment activities and observational guidelines covering eight domains, including many often ignored by traditional assessment instruments, such as mechanical construction and social understanding. Project Spectrum's work also included linking children's assessments to curricular development and bridging their identified strengths to other areas of learning.

Evidence of the Value of the Theory

MI theory has been incorporated into the educational process in schools around the world. There is much anecdotal evidence that educators, parents, and students value the theory, but, as of 2001, little systematic research on the topic has been completed. The main study was conducted by Mindy Kornhaber and colleagues at Harvard University's Project Zero in the late 1990s. They studied forty-one elementary schools in the United States that had been applying MI theory to school-based practice for at least three years. Among the schools that reported improvement in standardized-test scores, student discipline, parent participation, or performance of students with learning differences, the majority linked the improvement to MI-based interventions. Kornhaber's study also illuminates the conditions under which MI theory is adopted by schools and integrated into the educational process.

The difficulty of research on MI theory in education is correlating changes specifically to the theory, since schools are complex institutions that make it difficult to isolate cause-and-effect relationships. Indeed, since MI theory is meaningful in the context of education only when combined with pedagogical approaches such as project-based learning or artsintegrated learning, it is not possible to study the precise contribution of the theory itself to educational change, only the effect of interventions that are based on it or incorporate it.


CHEN, JIE-QI; KRECHEVSKY, MARA; and VIENS, JULIE. 1998. Building on Children's Strengths: The Experience of Project Spectrum. New York: Teachers College Press.

GARDNER, HOWARD. 1993. Frames of Mind: The Theory of Multiple Intelligences. New York: Basic Books.

GARDNER, HOWARD. 1993. Multiple Intelligences: The Theory in Practice. New York: Basic Books.

GARDNER, HOWARD. 1999. Intelligence Reframed: Multiple Intelligences for the 21st Century. New York: Basic Books.

GARDNER, HOWARD. 2000. The Disciplined Mind: Beyond Facts and Standardized Tests: The K–12 Education That Every Child Deserves. New York: Penguin Books.

GOLEMAN, DANIEL. 1995. Emotional Intelligence: Why It Can Matter More Than IQ. New York: Bantam Books.

KORNHABER, MINDY L. 1999. "Multiple Intelligences Theory in Practice." In Comprehensive School Reform: A Program Perspective, ed. James H. Block, Susan T. Everson, and Thomas R. Guskey. Dubuque, IA: Kendall/Hunt.

STERNBERG, ROBERT J. 1988. The Triarchic Mind: A New Theory of Human Intelligence. New York: Viking.


Additional topics

Education - Free Encyclopedia Search EngineEducation EncyclopediaIntelligence - Measurement, Multiple Intelligences, Myths, Mysteries, And Realities, Triarchic Theory Of Intelligence - EMOTIONAL INTELLIGENCE