Memory
Metamemory
Metamemory refers to a person's knowledge about the contents and regulation of memory. The term originally derives from the work of John H. Flavell in the early 1970s. Metamemory enables a person to reflect on and monitor her memory. In addition, metamemorial knowledge plays an important role in planning, allocation of cognitive resources, strategy selection, comprehension monitoring, and evaluation of performance.
This entry begins with a description of the two main structural components of metamemory–declarative knowledge, which enables a person to evaluate the contents of memory, and procedural knowledge, which enables a person to monitor and regulate memory performance. It next summarizes important developmental trends in metamemory, then discusses several important educational implications of metamemory research, including the relationships among metamemory, strategy instruction, and self-regulation.
Declarative and Procedural Aspects of Metamemory
Most theorists distinguish between declarative and procedural components of metamemory. The declarative component corresponds to statable knowledge about the contents and contexts of memory use and includes knowledge of memory's contents, knowledge of essential intellectual tasks such as reading and problem solving, and conditional knowledge about why and when strategies are most effective. The procedural component includes knowledge about procedural skills necessary to manage memory efficiently, including control processes such as planning and evaluating and monitoring processes such as judgments of learning. Some theorists, but especially those interested in the relationship between metamemory and social cognition, have proposed a third component, usually referred to as a beliefs component, that regulates affect, social cognition, and efficacy judgments of memory performance. The focus here, however, is on the declarative and procedural components.
The declarative component includes at least three distinct subcomponents: knowledge of contents and capacity, knowledge of tasks, and conditional knowledge about optimal memory performance. The content subcomponent enables a person to assess whether he possesses enough knowledge to meet task demands. The task subcomponent allows a person to determine whether he fully understands task demands and possesses adequate resources to perform the task. The conditional knowledge subcomponent, which many view as the most important of the three, helps a person determine why, when, and where to use a particular strategy or under what conditions he is most likely to achieve optimal performance. Conditional knowledge plays an especially important role in self-regulation.
The procedural component includes control and monitoring subcomponents. The control subcomponent includes regulatory processes such as planning, selection of relevant information, resource allocation decisions, selection of relevant strategies, and inferencing. The monitoring subcomponent includes a variety of self-assessment strategies such as ease-of-learning judgments, judgments of learning prior to beginning a task, feeling-of-knowing judgments made during learning, and comprehension-monitoring judgments made during or after a task. Most theories of metamemory assume that control processes directly regulate cognition and performance, whereas monitoring processes inform the precision of control decisions. Thus, control processes are at a higher level than monitoring processes, even though both reciprocally inform one another.
Development of Metamemory
A number of researchers have studied the development of metamemory, and four main conclusions can be drawn from this research. The first conclusion is that metamemory awareness is rather poor in children until the age of ten or older. Younger children frequently find it difficult to monitor the contents of memory, estimate the resources needed to complete a task, select appropriate strategies for a task, and monitor their learning. As a consequence, self-regulation is quite poor among children younger than ten years of age. Even among adults, however, metamemory awareness is poor, sometimes leading to overconfidence and illusions of knowing.
A second conclusion is that metamemory development is incremental and continuous. Development appears to be linear in nature with a steady increase in metamemory awareness, control, and monitoring from preschool through early puberty. Research generally does not reveal significant breaks or jumps in metamemory ability, suggesting continuous development over a ten-year period from early childhood through adolescence. It is less clear whether metamemory awareness continues to develop in adults, although most research indicates that awareness increases within specific domains as expertise develops.
A third conclusion is that metamemorial knowledge is self-constructed in nature through individual and interactive problem solving, as well as explicit strategy instruction and monitoring training. One essential element of the construction process is self-generated and other-generated feedback that increases knowledge of the contents of memory and tasks. A second essential element is modeling, in which an individual has the opportunity to observe and emulate skilled models. Thus far, researchers have failed to detect a strong link between metamemory and either intellectual ability or traditional measures of working memory speed and capacity. This suggests that metamemory awareness develops independent of other individual differences in memory.
The final conclusion is that metamemory facilitates strategy use and performance. For example, correlations between metamemory and memory performance typically range from .30 to .50, even in younger children between the ages of five and ten years. The correlation may be even stronger in adults and experts. Knowledge about the contents of one's memory as well as tasks clearly should affect performance. In addition, declarative knowledge appears to be correlated with regulatory awareness. The more one knows about memory, the better able one is to regulate one's performance.
Metamemory and Learning
Metamemory affects learning in many ways but especially with respect to the efficient use of limited cognitive resources, strategy use, and comprehension monitoring. Children and adults often experience difficulty learning because of cognitive overload–that is, too much mental work to do and too few cognitive resources at their disposal. Research reveals that declarative and procedural knowledge enables learners to use available resources more efficiently because they are better able to plan, sequence, and monitor learning tasks.
A second way that metamemory improves learning is through the flexible use of cognitive learning strategies. Research indicates that self-regulated learners use a diverse repertoire of strategies that are controlled using conditional knowledge in metamemory. Strategy use is highly correlated with skilled problem solving. Research also suggests that strategy training increases metamemory awareness, provided that conditional knowledge about the strategies is embedded within the instruction. In 1999 Roger Bruning, Gregg Schraw, and Royce Ronning provided a step-by-step summary of cognitive strategy instruction that includes feedback and modeling from peers, tutors, and teachers. Strategy instruction is especially effective for helping students develop conditional knowledge that enables them to select the most appropriate strategy and monitor its usefulness.
A third way that metamemory improves learning is comprehension monitoring. Unfortunately, many children and adults do not monitor with a high degree of accuracy. Monitoring training helps learners monitor more successfully and also improves performance. Strategy instruction also improves monitoring even when monitoring instruction is not included as part of the instruction. Thus, either strategy instruction or monitoring training improve monitoring accuracy. Combining strategy instruction and monitoring training within the same intervention helps learners construct the control and monitoring subcomponents of regulatory knowledge described above.
Classroom Implications
Metamemory research has not had a major impact on classroom instruction. The research suggests, however, that children acquire and construct metamemory knowledge in three distinct ways. One way is hands-on experience that provides declarative knowledge about tasks as well as procedural knowledge about optimal performance. A second way is through skilled models who provide detailed feedback–especially conditional feedback–that enables the student to distinguish between effective and less-effective strategies. A third way is through self-reflection and group reflection in which students explicitly discuss the effectiveness of different strategies and ways to improve performance in the future. Thus, there are many ways to improve metamemory awareness through classroom activities.
Several learning interventions have been developed that promote metamemory development and awareness. For example, in 1984 Annemarie S. Palincsar and Ann L. Brown described a program of reciprocal teaching that promotes the self-regulation of metamemory strategies. The program involves the teacher gradually handing over control of reading processes to the student in a small-group format. The teacher first models effective strategies (e.g., finding the main idea of a passage) then provides scaffolding to the students as they attempt to do the same while receiving feedback from their peers regarding the strategies they employ.
Summary
Metamemory is knowledge about memory. Metamemory awareness develops late and incrementally yet has an important impact on memory and cognitive performance. Metamemory is not linked strongly to other cognitive factors such as intelligence and memory capacity. Rather, it develops as a function of experience, guided modeling and feedback, and individual and group reflection.
BIBLIOGRAPHY
ALEXANDER, JOYCE M.; CARR, MARTHA; and SCHWANENFLUGEL, PAULA J. 1995. "Development of Metacognition in Gifted Children: Directions for Future Research." Developmental Review 15:1–37.
BRUNING, ROGER H.; SCHRAW, GREGG; and RONNING, ROYCE R. 1999. Cognitive Psychology and Instruction, 3rd edition. Upper Saddle River, NJ: Prentice Hall.
BUTLER, DEBORAH L., and WINNE, PHILIP H. 1995. "Feedback and Self-Regulated Learning: A Theoretical Synthesis." Review of Educational Re-search 65:245–282.
DIXON, ROGER A. 2000. "The Concept of Metamemory: Cognitive, Developmental, and Clinical Issues." In Memory Disorders in Psychiatric Practice, ed. German E. Berrios and John R. Hodges. New York: Cambridge University Press.
FLAVELL, JOHN H. 1971. "First Discussant's Comments: What Is Memory Development the Development Of?" Human Development 14:272–278.
METCALFE, JANET. 2000. "Metamemory: Theory and Data." In The Oxford Handbook of Memory, ed. Endel Tulving and Fergus Craik. New York: Oxford University Press.
NELSON, THOMAS O., and NARENS, LOUIS. 1994. "Why Investigate Metacognition?" In Metacognition: Knowing about Knowing, ed. Janet Metcalfe and Arthur P. Shimamura. Cambridge, MA: MIT Press.
PALINCSAR, ANNEMARIE S., and BROWN, ANN L. 1984. "Reciprocal Teaching of Comprehension-Fostering and Comprehension-Monitoring Activities." Cognition and Instruction 1:117–175.
SCHNEIDER, WOLFGANG. 1999. "The Development of Metamemory in Children." In Attention and Performance XVII: Cognitive Regulation of Performance, ed. Daniel Gopher and Asher Koriat. Cambridge, MA: MIT Press.
SCHNEIDER, WOLFGANG, and PRESSLEY, MICHAEL. 1997. Memory Development between Two and Twenty, 2nd edition. Mahwah, NJ: Erlbaum.
SCHRAW, GREGG. 2001. "Promoting General Metacognitive Awareness." In Metacognition in Learning and Instruction, ed. Hope J. Hartman. Norwell, MA: Kluwer.
SCHRAW, GREGG, and MOSHMAN, DAVID. 1995. "Metacognitive Theories." Educational Psychology Review 7:351–372.
STONE, N. J. 2000. "Exploring the Relationship between Calibration and Self-Regulated Learning." Educational Psychology Review 12:437–476.
SWELLER, JOHN; VAN MERRIENBOER, JEROEN J.; and PAAS, FRED G. 1998. "Cognitive Architecture and Instructional Design." Educational Psychology Review 10:251–296.
GREGORY SCHRAW
JOHN NIETFELD
Additional topics
Education - Free Encyclopedia Search EngineEducation EncyclopediaMemory - Development Of, Graphics, Diagrams, And Videos, Implicit Memory, Mental Models, Metamemory - AUTOBIOGRAPHICAL MEMORY